

Welcome to the PyXRD docs!

PyXRD is a python implementation of the matrix algorithm for computer modeling
of X-ray diffraction (XRD) patterns of disordered lamellar structures. It’s goals are to:

	provide an easy user-interface for end-users

	provide basic tools for displaying and manipulating XRD patterns

	produce high-quality (publication-grade) figures

	make modelling of XRD patterns for mixed-layer clay minerals ‘easy’

	be free and open-source

Motivation

PyXRD was written with the multi-specimen full-profile fitting method in mind.
The direct result of this is the ability to ‘share’ parameters among similar phases.

This allows for instance to have an air-dry and a glycolated illite-smectite
share their coherent scattering domain size, but still have different basal
spacings and interlayer compositions for the smectite component.

Other features are (incomplete list):

	Import/export several common XRD formats (.RD, .RAW, .CPI, ASCII)

	simple background subtraction/addition (linear or custom patterns)

	smoothing patterns and adding noise to patterns

	peak finding and annotating (markers)

	custom line colors, line widths, pattern positions, …

	goniometer settings (wavelengths, geometry settings, …)

	specimen settings (sample length, absorption, …)

	
	automatic parameter refinement using several algorithms, e.g.:

	
	L BFGS B

	Brute Force

	Covariation Matrix Adapation Evolutionary Strategy (CMA-ES; using DEAP)

	Multiple Particle Swarm Optimization (MPSO; using DEAP)

	scripting support

Contents

	Library API Reference
	Atoms module

	Probabilities module

	Phases module

	Goniometer module

	Mixture module

	Project module

	Calculations

	Script Tutorial
	Introduction

	Hello World script

	Running the script

Indices and tables

	Index

	Module Index

	Search Page

Library API Reference

	A python implementation of the matrix algorithm developed for the X-ray

	diffraction analysis of disordered lamellar structures

	Atoms module
	AtomType

	Atom

	Probabilities module
	Theory

	Models

	Phases module
	Phase

	CSDS

	Unit-cell properties

	Component

	Atom Relations

	Goniometer module

	Mixture module
	Mixture

	Optimizer

	Refiner

	RefineContext

	Project module
	Project

	Calculations
	Atoms

	Components

	Phases and CSDS

	Goniometer

	Specimen

	Statistics

	Improve

	Exceptions

	Data Objects

Atoms module

AtomType

Atom

Probabilities module

The probabilities module contains a classes that allow the calculation of
weigth and probability matrixes for mixed-layer minerals.

Theory

Mixed-layer probabilities

These probability classes use the Reichweite (= R) concept and
Markovian statistics to calculate how the layer stacking sequence is ordered (or
disordered).

The value for R denotes what number of previous layers (in a stack of layers)
still influence the type of the following component. With other words, for:

	R=0; the type of the next component does not depend on the previous components,

	R=1; the type of the next component depends on the type of the previous component,

	R=2; the type of the next component depends on the type of the previous 2 components,

	…

We can describe the stacking sequence using two types of statistics: weight
fractions and probabilities. Some examples:

	the fraction of A type layers would be called [image: W_A]

	the probability of finding an A type layer in a stack would be called [image: P_A]

	the fraction of A type layers immediately followed by a B type layer would be called [image: W_{AB}]

	the probability of finding an A type layer immediately followed by a B type layer would be called [image: P_{AB}]

There exist a number of general relations between the weight fractions W and
probabilities P which are detailed below. They are valid regardless of the
value for R or the number of components G. Some of them are detailed below.
For a more complete explanation: see Drits & Tchoubar (1990).
For stacks composed of G types of layers, we can write (with [image: N] the number of layers):

[image: \begin{align*} & \begin{aligned} & W_{i} = \frac{N_{i}}{N_{max}} &\forall i \in \left[{1,2,\dots,G}\right] \\ & W_{ij} = \frac{N_{ij}}{N_{max}-1} &\forall i, j \in \left[{1,2,\dots,G}\right] \\ & W_{ijk} = \frac{N_{ijk}}{N_{max}-2} &\forall i, j, k \in \left[{1,2,\dots,G}\right] \\ & \text{etc.} \\ \end{aligned} \quad \quad \begin{aligned} & W_{ij} = W_i \cdot P_{ij} \\ & W_{ijk} = W_{ij} \cdot P_{ijk} \\ & \text{etc.} \\ \end{aligned} \quad \quad \begin{aligned} & \sum_{i=1}^{G}{W_i} = 1 \\ & \sum_{i=1}^{G}{\sum_{j=1}^{G}{W_{ij}}} = 1 \\ & \text{etc.} \\ \end{aligned} \quad \quad \begin{aligned} & \sum_{j=1}^{G}{P_{ij}} = 1 \\ & \sum_{k=1}^{G}{P_{ijk}} = 1 \\ & \text{etc.} \\ \end{aligned} \\ \end{align*}]

Because of these relationships it is not neccesary to always give all of the
possible weight fractions and probability combinations. Each class contains
a description of the number of ‘independent’ variables required for a certain
combination of R ang G. It also details which ones were chosen and how the
others are calculated from them.

More often than not, ratios of several weight fractions are used,
as they make the calculations somehwat easier.
On the other hand, the actual meaning of these fractions is a little
harder to grasp at first.

Class functionality

The classes all inherit from an ‘abstract’ base class which provides a number
of common functions. One of the ‘handy’ features are its indexable properties
mW and mP. These allow you to quickly get or set an element in one of the
matrixes:

>>> from pyxrd.probabilities.models import R1G3Model
>>> prob = R1G3Model()
>>> prob.mW[0] = 0.75 # set W1
>>> print prob.mW[0]
0.75
>>> prob.mW[0,1] = 0.5 # set W12
>>> print prob.mW[0,1]
0.5

Note however, that doing so might produce invalid matrices and produce strange
X-ray diffraction patterns (or none at all). It is therefore recommended to use
the attributes of the selected ‘independent’ parameters (see previous section)
as setting these will trigger a complete re-calculation of the matrices.

If however, you do want to create a matrix manually, you can do so by setting
all the highest-level elements, which are:

	for an R0 class only the Wi values

	for an R1 class the Wi and Pij values

	for an R2 class the Wij and Pijk values

	for an R3 class the Wijk and Pijkl values

After this you can call the solve and validate methods, which will calculate
the other values (e.g. for an R2 it will calculate Wi, Wijk and Pij values).

An example:

>>> from pyxrd.probabilities.models import R1G2Model
>>> prob = R1G2Model()
>>> prob.mW[0] = 0.75 # set W1
>>> prob.mW[1] = 0.25 # set W2 (needs to be 1 - W1 !)
>>> prob.mP[1,1] = 0.3 # set P22
>>> prob.mP[1,0] = 0.7 # set P21 (needs to be 1 - P22 !)
>>> prob.mP[0,1] = 0.7 / 3.0 # set P12 (needs to be P21 * W2 / W1!)
>>> prob.mP[0,0] = 2.3 / 3.0 # set P11 (needs to be 1 - P12 !)
>>> prob.solve()
>>> prob.validate()
>>> print prob.get_distribution_matrix()
[[0.75 0.]
 [0. 0.25]]
>>> print prob.get_probability_matrix()
[[0.76666667 0.23333333]
 [0.7 0.3]]

Note that at the end we print the validation matrixes to be sure that we did a
good job: if all is valid, we should see only “True” values. For more details
on what elements produced an invalid results, you can look at the W_valid_mask
and P_valid_mask properties.

The exact same result could have been achieved using the independent parameter
properties:

>>> from pyxrd.probabilities.models import R1G2Model
>>> prob = R1G2Model()
>>> prob.W1 = 0.75
>>> prob.P11_or_P22 = 0.3
>>> print prob.get_distribution_matrix()
[[0.75 0.]
 [0. 0.25]]
>>> print prob.get_probability_matrix()
[[0.76666667 0.23333333]
 [0.7 0.3]]

For more information see the
_AbstractProbability class

Models

Base Models

R0 Models

R0 models have [image: G - 1] independent parameters, [image: G] being the number of components.

Partial weight fractions were chosen as independent parameters,
as this approach scales very well to a large number of components:

If we define a partial weight fraction as
[image: F_i = \frac{W_i}{\sum_{j=i}^{G}{W_j}} \forall i \in \left[{1,G} \right]],
and keep in mind the general rule [image: \sum_{i=1}^{G}{W_i} = 1], we can
calculate all the weight fractions from these partial weight fractions progressively, since:

	[image: F_1] will acutally be equal to [image: W_1].

	the denominator of every fraction [image: F_i] is equal to
[image: 1 - \sum_{j=1}^{i-1}{W_j}], and you are able to calculate this:

	for [image: F_2], it would be [image: 1 - W_1], and you know
[image: W_1] from the first fracion

	for [image: F_3] it would be [image: 1 - W_1 - W_2], and you can get
[image: W_1] and [image: W_2] from the previous two fractions.

	once the weight fractions of the first [image: G - 1] components are known,
then the weight fractions of the last component can be calculated
as [image: W_g = 1 - \sum_{i=1}^{G}{W_i}].

R1 Models

R2 Models

R3 Models

Phases module

The phases module contains a number of classes that allow to create complex
mixed-layer phases.

TODO: add example code on how to use them!

Phase

CSDS

Unit-cell properties

Component

Atom Relations

Goniometer module

Mixture module

The mixture module contains a number of classes that manage ‘mixtures’. Mixtures
combine multiple specimens and phases with each other. Mixtures are part of the
project, which also holds a reference to the phases and specimens
(and possible others as well) in the mixture.

The combination of phases and specimens is achieved using a kind of combination
‘matrix’, in which rows are phases and columns are specimens. In other
words, each column gets a specimen asigned to it, and each slot in the matrix
gets a phase asigned to it. This way it is possible to have the same phase for
different specimens of your sample if that pĥase is believed to be ‘immune’ to
the treatments, or to have different (or at least partially different) phases
when it is believed to be affected by the treatment in some way.

For an explanation on how to create and link phases see the documentation on
Phases module.

TODO: add example code on how to use mixtures, optimizers and refiners

Mixture

Optimizer

Refiner

RefineContext

Project module

Project

Calculations

This module contains the basic implementation of the matrix formalism as
detailed in Drits and Tchoubar (1990) and Plançon (2001).

It was chosen to implement this using ‘loose’ function calls. The disadvantage
of this approach is that the functions are no longer bound to class instances,
which makes them less intuitive to use. The advantage is we can more easily
call these functions asynchronously (e.g. using Pool)

Despite all this, most function calls in this module do expect to be passed a
DataObject sub-class, which wraps all the data in a single object.
These DataObject s map onto the different models used. As such this
module is also largely independent from the MVC framework used.

Drits, V.A., and Tchoubar, C., 1990. X-Ray Diffraction by Disordered Lamellar Structures: Theory and Applications to Microdivided Silicates and Carbons. Springer-Verlag, Berlin, Germany.
Plançon, A., 2001. Order-disorder in clay mineral structures. Clay Miner 36, 1–14.

Atoms

Components

Phases and CSDS

Goniometer

Specimen

Statistics

Improve

Exceptions

	
exception pyxrd.calculations.exceptions.WrapException

	A wrapped exception used by the wrap_exceptions() decorator.

	
pyxrd.calculations.exceptions.wrap_exceptions(func)

	Function decorator that allows to provide useable tracebacks when the
function is called asynchronously and raises an error.

Data Objects

The following classes are not meant to be used directly, rather you should
create the corresponding model instances and retrieve the DataObject from
them.

The rationale behind not using the model instances directly is that
they are difficult to serialize or pickle (memory-)efficiently.
This is mainly due to all of the boiler-plate code that takes care of
references, saving, loading, calculating properties from other properties
etc. A lot of this is not needed for the actual calculation.
The data objects below, on the other hand, only contain the data needed to
be able to calculate XRD patterns.

	
class pyxrd.calculations.data_objects.DataObject(**kwargs)

	The base class for all DataObject instances.

The constructor takes any number of keyword arguments it will set as
attributes on the instance.

	
class pyxrd.calculations.data_objects.AtomTypeData(**kwargs)

	The DataObject describing an AtomType.

	
par_a = None

	a numpy array of a scattering factors

	
par_b = None

	a numpy array of b scattering factors

	
par_c = None

	the c scattering constant

	
debye = None

	the debye-waller temperature factor

	
class pyxrd.calculations.data_objects.AtomData(**kwargs)

	The DataObject describing an Atom.

	
atom_type = None

	an AtomTypeData instance

	
pn = None

	the # of atoms projected to this z coordinate

	
default_z = None

	the default z coordinate

	
z = None

	the actual z coordinate

	
class pyxrd.calculations.data_objects.ComponentData(**kwargs)

	The DataObject describing an Atom

	
layer_atoms = None

	a list of AtomData instances

	
interlayer_atoms = None

	a list of AtomData instances

	
volume = None

	the component volume

	
weight = None

	the component weight

	
d001 = None

	the d-spacing of the component

	
default_c = None

	the default d-spacing of the component

	
delta_c = None

	the variation in d-spacing of the component

	
lattice_d = None

	the height of the silicate lattice (excluding the interlayer space)

	
class pyxrd.calculations.data_objects.CSDSData(**kwargs)

	The DataObject describing the CSDS distribution.

	
average = None

	average CSDS

	
maximum = None

	maximum CSDS

	
minimum = None

	minimum CSDS

	
alpha_scale = None

	the alpha scale factor for the log-normal distribution

	
alpha_offset = None

	the alpha offset factor for the log-normal distribution

	
beta_scale = None

	the beta scale factor for the log-normal distribution

	
beta_offset = None

	the beta offset factor for the log-normal distribution

	
class pyxrd.calculations.data_objects.GonioData(**kwargs)

	The DataObject describing the Goniometer setup.

	
min_2theta = None

	Lower 2-theta bound for calculated patterns

	
max_2theta = None

	Upper 2-theta bound for calculated patterns

	
steps = None

	The number of steps in between the lower and upper 2-theta bounds

	
has_soller1 = False

	If the first soller slits are present

	
soller1 = None

	The first soller slit size

	
has_soller2 = False

	If the first soller slits are present

	
soller2 = None

	The second soller slit size

	
divergence_mode = 'FIXED'

	The divergence slit mode

	
divergence = None

	The divergence size (degrees (fixed) or mm (auto))

	
mcr_2theta = 0

	The Bragg angle of the monochromator (or 0° if not present)

	
has_absorption_correction = None

	Flag indicating if intensities need to be corrected for absorption

	
absorption = 45.0

	The sample mass absorption coefficient (mg/cm²)

	
sample_surf_density = 20.0

	The sample surface density (cm²/g)

	
radius = None

	The goniometer radius

	
wavelength = None

	The goniometer wavelength

	
wavelength_distribution = None

	The goniometer wavelength distribution

	
sample_length = None

	The sample length

	
class pyxrd.calculations.data_objects.ProbabilityData(**kwargs)

	The DataObject describing the layer stacking probabilities

	
valid = None

	Whether this probability is really a valid one

	
G = None

	The number of components this probability describes

	
W = None

	The weight fractions matrix

	
P = None

	The probabilities matrix

	
class pyxrd.calculations.data_objects.PhaseData(**kwargs)

	The DataObject describing a phase

	
apply_lpf = True

	A flag indicating whether to apply Lorentz-polarization factor or not

	
apply_correction = True

	A flag indicating whether to apply machine corrections or not

	
components = None

	A list of ComponentData instances

	
probability = None

	A ProbabilityData instance

	
sigma_star = None

	The sigma start value

	
csds = None

	A CSDSData instance

	
class pyxrd.calculations.data_objects.SpecimenData(**kwargs)

	The DataObject describing a specimen

	
goniometer = None

	A GonioData instance

	
absorption = None

	The sample absorption

	
phases = None

	A list of PhaseData instances

	
observed_intensity = None

	A numpy array with the observed intensities

	
total_intensity = None

	A numpy array with the calculated intensity

	
phase_intensities = None

	A nummpy array with the calculated phase profiles

	
class pyxrd.calculations.data_objects.MixtureData(**kwargs)

	The DataObject describing a mixture

	
specimens = None

	A list of SpecimenData instances

	
fractions = None

	A numpy array with the phase fractions

	
bgshifts = None

	A numpy array with the specimen background shifts

	
scales = None

	A numpy array with the specimen absolute scales

	
parsed = False

	Whether this MixtureData object has been parsed (internal flag)

	
calculated = False

	Whether this MixtureData object has been calculated (internal flag)

	
optimized = False

	Whether this MixtureData object has been optimized (internal flag)

	
n = 0

	The number of specimens

	
m = 0

	The number of phases

Script Tutorial

	Introduction

	Hello World script

	Running the script
	Windows

	Linux

Introduction

It is possible to write scripts for PyXRD (projects). This allows anybody to
make PyXRD do things it wasn’t really intended to do or to automate certain tasks.
Parts of the official PyXRD code are scripts themselves. This tutorial will provide
an introduction on how to setup such a script.

We assume the interested reader has already made himself familiar with Python.

Hello World script

Fire up your favorite text editor and copy the following piece of code:

#!/usr/bin/python
coding=UTF-8

import logging
logger = logging.getLogger(__name__)

def run(args):
 """
 Run as
 python core.py -s path/to/hello_world.py
 """
 logging.info("Creating a new project")

 from pyxrd.project.models import Project
 project = Project(name="Hello World", description="This is a hello world project")

 from pyxrd.scripts.tools import reload_settings, launch_gui
 reload_settings()
 launch_gui(project) # from this point onwards, the GUI takes over!

What this script does is very simple: it will create a new project, with it’s
name and title set to “Hello World” and “This is a hello world project”
respectively. Then it will launch the gui as it would normally start but pass in
this newly created project. What you should see is PyXRD loading as usual but
with this new project pre-loaded.

Running the script

Save the script somewhere (e.g. on your desktop) and name it “hello_world.py”.

To run this script you have to tell PyXRD where to find it first. So instead
of starting PyXRD as you would usually do, open up a command line (Windows) or
terminal (Linux), and follow the instructions below.

Windows

On windows the following command should start PyXRD with the script:

C:\Python27\Scripts\PyXRD.exe -s "C:\path\to\script\hello_world.py"

Replace the path\to\script part with the actual path where you saved the script.
The above example also assumes you have installed python in C:\Python27 (the default).

Linux

On linux the following command should start PyXRD with the script:

PyXRD -s "/path/to/script/hello_world.py"'

Replace the /path/to/script/ part with the actual path where you saved the script.
This assumes you have installed PyXRD using pip so that the PyXRD command is
picked up by the terminal. If you get an error like ‘PyXRD: command not found’,
you will need to find out where PyXRD was installed and use the full path instead.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyxrd	

 	
 	
 pyxrd.atoms.models	

 	
 	
 pyxrd.calculations	

 	
 	
 pyxrd.calculations.data_objects	

 	
 	
 pyxrd.calculations.exceptions	

 	
 	
 pyxrd.mixture.models	

 	
 	
 pyxrd.mixture.models.optimizers	

 	
 	
 pyxrd.mixture.models.refiner	

 	
 	
 pyxrd.phases.models.atom_relations	

 	
 	
 pyxrd.phases.models.component	

 	
 	
 pyxrd.phases.models.CSDS	

 	
 	
 pyxrd.phases.models.phase	

 	
 	
 pyxrd.phases.models.unit_cell_prop	

 	
 	
 pyxrd.probabilities.models.base_models	

 	
 	
 pyxrd.probabilities.models.R0models	

 	
 	
 pyxrd.probabilities.models.R1models	

 	
 	
 pyxrd.probabilities.models.R2models	

 	
 	
 pyxrd.probabilities.models.R3models	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W
 | Z

A

 	
 	absorption (pyxrd.calculations.data_objects.GonioData attribute)

 	(pyxrd.calculations.data_objects.SpecimenData attribute)

 	alpha_offset (pyxrd.calculations.data_objects.CSDSData attribute)

 	alpha_scale (pyxrd.calculations.data_objects.CSDSData attribute)

 	apply_correction (pyxrd.calculations.data_objects.PhaseData attribute)

 	
 	apply_lpf (pyxrd.calculations.data_objects.PhaseData attribute)

 	atom_type (pyxrd.calculations.data_objects.AtomData attribute)

 	AtomData (class in pyxrd.calculations.data_objects)

 	AtomTypeData (class in pyxrd.calculations.data_objects)

 	average (pyxrd.calculations.data_objects.CSDSData attribute)

B

 	
 	beta_offset (pyxrd.calculations.data_objects.CSDSData attribute)

 	
 	beta_scale (pyxrd.calculations.data_objects.CSDSData attribute)

 	bgshifts (pyxrd.calculations.data_objects.MixtureData attribute)

C

 	
 	calculated (pyxrd.calculations.data_objects.MixtureData attribute)

 	ComponentData (class in pyxrd.calculations.data_objects)

 	
 	components (pyxrd.calculations.data_objects.PhaseData attribute)

 	csds (pyxrd.calculations.data_objects.PhaseData attribute)

 	CSDSData (class in pyxrd.calculations.data_objects)

D

 	
 	d001 (pyxrd.calculations.data_objects.ComponentData attribute)

 	DataObject (class in pyxrd.calculations.data_objects)

 	debye (pyxrd.calculations.data_objects.AtomTypeData attribute)

 	default_c (pyxrd.calculations.data_objects.ComponentData attribute)

 	
 	default_z (pyxrd.calculations.data_objects.AtomData attribute)

 	delta_c (pyxrd.calculations.data_objects.ComponentData attribute)

 	divergence (pyxrd.calculations.data_objects.GonioData attribute)

 	divergence_mode (pyxrd.calculations.data_objects.GonioData attribute)

F

 	
 	fractions (pyxrd.calculations.data_objects.MixtureData attribute)

G

 	
 	G (pyxrd.calculations.data_objects.ProbabilityData attribute)

 	
 	GonioData (class in pyxrd.calculations.data_objects)

 	goniometer (pyxrd.calculations.data_objects.SpecimenData attribute)

H

 	
 	has_absorption_correction (pyxrd.calculations.data_objects.GonioData attribute)

 	
 	has_soller1 (pyxrd.calculations.data_objects.GonioData attribute)

 	has_soller2 (pyxrd.calculations.data_objects.GonioData attribute)

I

 	
 	interlayer_atoms (pyxrd.calculations.data_objects.ComponentData attribute)

L

 	
 	lattice_d (pyxrd.calculations.data_objects.ComponentData attribute)

 	
 	layer_atoms (pyxrd.calculations.data_objects.ComponentData attribute)

M

 	
 	m (pyxrd.calculations.data_objects.MixtureData attribute)

 	max_2theta (pyxrd.calculations.data_objects.GonioData attribute)

 	maximum (pyxrd.calculations.data_objects.CSDSData attribute)

 	
 	mcr_2theta (pyxrd.calculations.data_objects.GonioData attribute)

 	min_2theta (pyxrd.calculations.data_objects.GonioData attribute)

 	minimum (pyxrd.calculations.data_objects.CSDSData attribute)

 	MixtureData (class in pyxrd.calculations.data_objects)

N

 	
 	n (pyxrd.calculations.data_objects.MixtureData attribute)

O

 	
 	observed_intensity (pyxrd.calculations.data_objects.SpecimenData attribute)

 	
 	optimized (pyxrd.calculations.data_objects.MixtureData attribute)

P

 	
 	P (pyxrd.calculations.data_objects.ProbabilityData attribute)

 	par_a (pyxrd.calculations.data_objects.AtomTypeData attribute)

 	par_b (pyxrd.calculations.data_objects.AtomTypeData attribute)

 	par_c (pyxrd.calculations.data_objects.AtomTypeData attribute)

 	parsed (pyxrd.calculations.data_objects.MixtureData attribute)

 	phase_intensities (pyxrd.calculations.data_objects.SpecimenData attribute)

 	PhaseData (class in pyxrd.calculations.data_objects)

 	phases (pyxrd.calculations.data_objects.SpecimenData attribute)

 	pn (pyxrd.calculations.data_objects.AtomData attribute)

 	probability (pyxrd.calculations.data_objects.PhaseData attribute)

 	ProbabilityData (class in pyxrd.calculations.data_objects)

 	pyxrd (module)

 	pyxrd.atoms.models (module)

 	pyxrd.calculations (module)

 	
 	pyxrd.calculations.data_objects (module)

 	pyxrd.calculations.exceptions (module)

 	pyxrd.mixture.models (module)

 	pyxrd.mixture.models.optimizers (module)

 	pyxrd.mixture.models.refiner (module), [1]

 	pyxrd.phases.models.atom_relations (module)

 	pyxrd.phases.models.component (module)

 	pyxrd.phases.models.CSDS (module)

 	pyxrd.phases.models.phase (module)

 	pyxrd.phases.models.unit_cell_prop (module)

 	pyxrd.probabilities.models.base_models (module)

 	pyxrd.probabilities.models.R0models (module)

 	pyxrd.probabilities.models.R1models (module)

 	pyxrd.probabilities.models.R2models (module)

 	pyxrd.probabilities.models.R3models (module)

R

 	
 	radius (pyxrd.calculations.data_objects.GonioData attribute)

S

 	
 	sample_length (pyxrd.calculations.data_objects.GonioData attribute)

 	sample_surf_density (pyxrd.calculations.data_objects.GonioData attribute)

 	scales (pyxrd.calculations.data_objects.MixtureData attribute)

 	sigma_star (pyxrd.calculations.data_objects.PhaseData attribute)

 	
 	soller1 (pyxrd.calculations.data_objects.GonioData attribute)

 	soller2 (pyxrd.calculations.data_objects.GonioData attribute)

 	SpecimenData (class in pyxrd.calculations.data_objects)

 	specimens (pyxrd.calculations.data_objects.MixtureData attribute)

 	steps (pyxrd.calculations.data_objects.GonioData attribute)

T

 	
 	total_intensity (pyxrd.calculations.data_objects.SpecimenData attribute)

V

 	
 	valid (pyxrd.calculations.data_objects.ProbabilityData attribute)

 	
 	volume (pyxrd.calculations.data_objects.ComponentData attribute)

W

 	
 	W (pyxrd.calculations.data_objects.ProbabilityData attribute)

 	wavelength (pyxrd.calculations.data_objects.GonioData attribute)

 	wavelength_distribution (pyxrd.calculations.data_objects.GonioData attribute)

 	
 	weight (pyxrd.calculations.data_objects.ComponentData attribute)

 	wrap_exceptions() (in module pyxrd.calculations.exceptions)

 	WrapException

Z

 	
 	z (pyxrd.calculations.data_objects.AtomData attribute)

 _images/math/920a388a4835c35fe75dc87ea08296f6d3b492c8.png

_images/math/a0efe2b2528f840acfc0e2065aa0d1467e09c062.png

_images/math/5f860c56bf2ab755976e3c93a6bd743ab2dbb4b9.png

_images/math/7a394c7db0daa361887eb28e6758955781a45151.png

_images/math/ae9dd01b2ac70be8eb7303bf1fe6e5c1b8919ede.png

_images/math/b559f5573ec0ee07233b0bcdc2cdbf7e248bfe5a.png
vie[1,2...,G)
vijelL2...,6

Vijke[L2...,6]

_images/math/a8e0402409a121a5eaf114eab1ab4fa258bb6234.png

_images/math/a8ef407aaa7c45dcfe02d2fa110ac039ea5c8380.png

_images/math/c6b01f56e04968f8f4e7e5e8327651c19c234f8f.png

_images/math/d89721b2e57154b4a33bcffcb8d9dfccb8689763.png

_images/math/25c1ea9ba9f30d265b25beb92271ba0a4921dafb.png

_images/math/3025b1158c1fdeef8892d9ceba1fadf64daa434b.png
— Wy — Wa

_images/math/0b4f2e9345681365ae6fb182bbb4951c87949e00.png

_images/math/1b92d87b608ce4b65087ef3f7b4b4ce8cd0789a1.png

_images/math/55f1cecc6f9a80eae2ce3c57f1a30fa174af4bb5.png

_images/math/da462b4406c517c6314580b7fe1e926039a8a99d.png

nav.xhtml

 Table of Contents

 		
 Welcome to the PyXRD docs!

 		
 Library API Reference

 		
 Atoms module

 		
 AtomType

 		
 Atom

 		
 Probabilities module

 		
 Theory

 		
 Models

 		
 Phases module

 		
 Phase

 		
 CSDS

 		
 Unit-cell properties

 		
 Component

 		
 Atom Relations

 		
 Goniometer module

 		
 Mixture module

 		
 Mixture

 		
 Optimizer

 		
 Refiner

 		
 RefineContext

 		
 Project module

 		
 Project

 		
 Calculations

 		
 Atoms

 		
 Components

 		
 Phases and CSDS

 		
 Goniometer

 		
 Specimen

 		
 Statistics

 		
 Improve

 		
 Exceptions

 		
 Data Objects

 		
 Script Tutorial

 		
 Introduction

 		
 Hello World script

 		
 Running the script

 		
 Windows

 		
 Linux

_images/math/0813cb4737ae70a720f0a5c96917fbfa8653c557.png

_static/ajax-loader.gif

_images/math/08f05def6d945a49da282c74570114a1890a4b02.png

_images/math/eaba1384c3995ce3b7af936ee77e51b42d9fac58.png
Fo=ge e[l

_images/math/fe4f5228c4c9d05b13794e0f25c6e957e603ba51.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

